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summaz~ 
T h i s  p a p e r  d e s c r i b e s  a s i m p l e  model  o f  t o p o l o g i c a l  
c o n s t r a i n t s  on p o l y m e r  n e t w o r k  c h a i n s .  I n  t h e  f r ame  
o f  t h i s  model  we c a l c u l a t e  t h e  d e f o r m a t i o n  d e p e n d e n c e  
o f  t h e  c o n s t r a i n i n g  p o t e n t i a l  u s e d  i n  a t h e o r y  o f  
stress-strain behaviour previously. 

Introduction 

An extension of ideas of EDWARDS /I/ concerning topo- 
logical constraints leads ~o a statistical-mechanical 
theory /2,3/ of randomly crosslinked polymer networks 
which yields an equation for the stress in simple 
tension in the form 

= 2c1(~_ ~-2) + 202( ~b/2-I ~ - (b+ l ) )  (1) 
with 

kT~ 2C~ kTN 6-1/2 2 201 = -V -  and = "V -  b (R2)/po (2) 

The Co - term describes the departure from phantom 
network behaviour and results from effects of topo- 
logical constraints, simulated by a harmonic (ED- 
WARDS-) constraining potential /I/. ~ is the number 
of crosslinks in the volume V of the sample and N 
the number of primary chains in the uncrosslinked 
polymer from which the vulcanisate is formed. 
(R2> = 1L (1 - statistical segment length! L - con- 
tour length) is the meam-square end-to-end distance 
of the primary chains, and Po denotes the mean- 
square fluctuations of the s~atistical chain segment 
after crosslimklng, k ann T have their usual slgmi- 
ficamce. The parameter b describes the deformation 
dependence ef the mean fluctuations. It has been 
introduced /2,3/ by the relation 

= ~F b/2 Po (F = x ,y ,z ) .  P~ 
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In the case b = 2 the theory yields a Mooney-Rivlin 
equation /2/. For crosslinking points per primary 
chain M/N ~1 one gets a ratio of the Mooney-Rivlin- 
parameters C2/C I in the order of unity if p~ ~lL, 
i.e. mean-square fluctuations in the order ~f mean 
dimension of a single macromolecule. Such great values 
of Pc are in disagreement with calculations made by 
D0I /4/ for dense polymer systems (p~ IEIL). It was 
shown that the case b < 2 which describes a weaker 
deformation dependence than the affine ansatz, solves 
the contradictory /3/. 

From a phenomenological point of view TSCHOEGL /5/ 
proposed a constitutive two-term elastic potential 
from which eq. (1) could be deduced, the first term 
is the neo-Hookean potential predicted by the phantom 
network theory of a "perfect network". The second ac- 
counts for contributions arising from "equivalent 
pseudo-crossllnks" modelling the topological con- 
straints (entanglements) in real rubbers. Reasonable 
experimental agreement with eq. (1) has been achieved 
by setting b = -0.5 /5/. 

The aim of this paper is to outline statistical me- 
chanical considerations for explaining the value 
b = -0.5 and at last to express pc by chain parame- 
ters and polymer density. 

Theqr~ 

For simulating the topological constraints of the 
network chains we present a simple model of an infi- 
nite chain hindered by neighbourlng chains with end- 
points fixed in the gel (crossllnklng points). A~part 
of the ~inite chain in the mean configuration ~(s) 
(s - chain arc length) is approximated by a straight 
llne which we identify with the x-axis of a co-ordi- 
nate system (Fig. 1~. Further we assume that onl~ d 
such chains are wopo•177 acwive wnlca aave e - 
points at ~i and ~Li in one half-s~ce y~ 0 and any 
segments i in the x~plane at Yi~ 0 ~ entanglement 
effects ) or Yi~0 ( packing eff6cts ). i denotes the 
chain number. The contribution of the constraining 
chains to the constraining potential for a segment of 
the considered chain is supposed to be caused by the 
differences of their entropy in dependence of con- 
figuration~s) of the constrained chain. For simpli- 
city we characterize ~(s) by the position of the con- 
strained segment Y(s) = Yo- 
For a flexible continuous Gaussian chain as a chain 
model the probability of finding a segment s'of a 
chain with end~oints fixed at ~o and r~L in the xy- 
plane at y = y and -1/2~x~l/2 is 
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Figure 1: 

A model for simu- 
lating topological 
constraints. 

1/2 l / 2  

p(,',ro,~L) : ~z~ax'P(r;Eo,s')P(~rL,~'L-s')" 
-1/2 -1/2 

(3) 

p(E,,~'Is,-s") = (3/2~Js'-s"J) 3/2 exp(-(3/211s'-s"i) 
(E'-r~') 2 ) (4) 

is the distribution function of chain segment distan- 
ces. For simplicity we replace the x' and z' inte- 
grations b~ 

and obtain the result 

P(Y'IEo,EL ) = 12(3/2~is')3/2(3/2~l(L-s'))3/2 

ex~(-(3/21(L-s')) (xL2+(y'-yL)2+zL2)) 

exp(-(3/21s') (Xo2+(y'-yo)2+Zo2)) �9 (5) 



402 

For the sum of the free energy of the constraining 
chain with endpoints at Eol, ~Li and -~o4, ~Li (the 
corresponding symmetric situation) cause~ by a dis- 
placement of the constrained segment from Y(s)=0 to 
Y(s)=Y o we obtain 

z~Fi(Yol ~oi'ZLi ) = -TASi(Yol ~roi'rLi) (6) 

with the entropy 

aSi(Xolroi,~rLi) = Si(Yolroi,rLi) + Si(-Yolroi,~L i) 

- 2 Si(Olroi,rLi) . (7) 

S(Y~I ~^,~T) follows from the statistical weight 
v ~v , th h G(Y^I r.^,~u of e c aln with fixed position of end- 

poi~Vro~and r L via 

S(Yolro,rL) = k In G(Yolro,r L) , (8) 

and 

G(YoI~o,~T) ~J P(Y 'I ~o ,~T) d~' (9) 

Yo 

From eqn. (5) and (9) one gets 

G(Yol~o,r L) = const, exp(-(@/L) ((L-s')ro2+S ~L 2) ) 

exp(~ ~2) (q-2/~ I/2 erf(~q/2(Yo-~))) (10) 

with erf(x) the error-function, o(= 3L/21s'(L-s') 
andS= (Yo(L-s')+YLS')/L . 

Finally a Taylor-expansion of the error-function up 
to the second order yields for the free energy in 
long chain approximation 

aFi(YolIoi,~i) = ~ 6/~/21 (3L/21sl(L-s[)) I/2 

(Yoils~ + ~Til(T-s~)) ~o 2 . (11) 

In eq. (ql) all terms containing Xol , XLi, Zoi , ZLi 
do vanish. 
The contribution of all network chains i to the con- 
straining potential is given by 

i 
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: fa3ro/d3rT. ~+(IT.Iio)P(Io ) nZ(YoI/o'ET.) (la) 
...> denotes averaging over all positions /oi, /~Li 

of the i-th chain. P(~o) = pp (polymer chain density) 
is the a priori probabilit~ ~or finding a chain 
starting point in the gel. P+(~L~o) is the probabili- 
ty for finding a chain with starting and end polmt at 
r o and rL and any intermediate point ~'> 0 (comfigu- 
ratzons I and 2 zn Fzg.1). In accordance with our 
model we approximate p+ b~ 

p+(~T.l~o) : fay,  p(y,l~,~o ) (~3) 
0 

with p(y';rL,r o) from eq.(5). The appropriate proba- 
bllit~ for the symmetrxc conflgurations I and 2 
(Fig.l) can be written as 

0 
P-(~T;Eo) : ~ dy' P(Y';~T,,~O) �9 

Performing the integration yields 

P +(~L I to) = 1212 (312~1L) 512 L21 ( s ' ( T,-s' ) ) 

exp(-(~/L) ( (L-s')~o2+S 'rT 2) ) exp( ~2) 

( 1 - ( 2 / ~ ' 1 / 2 )  e r f  ( -  ~ 1 / 2 ~  - - -  - ) )  . (1# )  

This probability depends only on the permanent topo- 
logical situation (i.e. is independent of external 
deformation /I/) which is fixed after the vulcani- 
satlon process. If long constraining network chains 
are assumed, the probability p+ is nearly the same 
for all s' and the constraining segment can be as- 
sumed to be s' = T/2o 

The free energy differenceAF(Y~) in the deformed 
state depends on the deformatio~ by the displacement 
of the endpoints of the constraining chains. If we 
assume an affine displacement of the crosslinks, 

I o i  = l~oi , I L i - - - "  ~ i  ' (15) 
we obtain from eqn. (12) and (I#) s~ter expanding the 
error-function (for Yo, yL ~ (1L) I/~ the integrating 
function gives extremely small contributions to the 
integral) the free energy per constrained chain arc 
length 
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~,, 83/2 11/2 
A~O:o~ ~t )=z~F(~o~ J, ) / l  : ~ ~ pp ;~y Yo~16 ) -  

Using the diagonal form of ~ in (15) is in accor- 
dance with the assumption of the EDWARDS-theory /1/ 
that the constraining potential is independent from 
the direction of the constrained segment. 

A generalization of eq. (16) then gives 

~Pp (~x (X-~)2+ ~y (y_~)2+ ~z (Z-~)2) (17) 
kT 

with ~= (X,Y,Z) the mean configuration and R = (X, 
Y,Z) the actual configuration of the constrained 
chain. 

From eqn. (16) and (17) and from eq. (20) in /2/, 

�9 ' r , y ,  Z 

follows 

o ~  0.9 ql/4 (1~)1/2 ~ b/2 , q : v /~ ,  
(1L)}/2 (18) 

with b = -0.5, i.e. the value of the TSOHOEGL-equation. 

Discussion 

The presented model must be regarded as a simple 
attempt to simulate chain constraining effects. Ne- 
vertheless it gives a proper result concerning the 
deformation dependence of the constraining entropic 
potential which is in agreement with experimental 
observations /5/. In this sense the b=-0.5 result 
gives a support of the network theory in /2,3/, 
especially for the statistical interpretation of the 
Mooney-Rivlin-like behaviour of the tensile stress. 

Eq. (16) indicates that in good approximation the 
constraining potential is a harmonic-like. This con- 
firms the idea of the tube-like confinement /6,7/ 
due to the topological restrictions that chains can- 
not pass through each other. EDWARDS and DEA~ /8/ 
argued that the density of entanglements dominates 
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the tube radius Po. Our model indicates that both 
"entanglement effects" and "packing effects" give 
contributions (but with different weight) to the 
constraining potential. 

The estimation of the tube-radius is one important 
problem in the field of concentrate~ polymer solu- 
tions and several attempts have been made to calcu- 
late it in terms of a harmonic potential /I,@,9,10/. 
Though EDWARDB /1,10/ and DE GENNES /9/ used dif- 
ferent approaches, they reached the same result for 
am mmcressllmk~2concentrated~ polymer solution, 
namely 9o ~ Po- ! �9 DOI /4/ criticized this result 
using scal~u~ requirements which should be satisfied 
in the ~ontinuous Gaussian chain model. He found 
ooN pn -q under the conditions (1L)3/2~ p~-1 and 
~p12~l which should be realized at ver~ large de- 
grees of oolymerization. We note that the result 
po N po-1/~ (eq. 118)) gives support for BUECHE's 
relation nc~ PD- /11/, where nc is the critical de- 
gree of polymerization below which the t~be-model 
breaks down and which is defined by .iUcI/2/~ o =const. 
Using eq. (18) this relation yields the pp-~ depen- 
dence. 

It is interesting to note that the tube-like model 
cam be reformulated in the frame of the primitive 
chain concept /12/ in which is assumed Po to be equal 
to the average length of a primitive chain step at 
equilibrium. In thiw the calculation of Po in 
/~/ ~ields n^Nn~-P/ using the scaling concept 
(DE GENNES /~4/) in polymer physics and poNPp-3/5 
/12/, respectively, using a mean-field theory. 
DOI and EDWARDS /12/ argued that a deformation modi- 
fies the tube only longitudinally but not transver- 
sally. The different assumption of changing the tube 
diameter by external deformation, proposed by MAR- 
RUCCI et.al. /15,16/, is in principle agreement with 
our result. 

Further, we note that the presented model gives hope 
for explaining the relaxation behavlour of the Moo- 
ney-Rivlin parameters /17/. The "fast" relaxation 
of C 1 after a sudden deformation may be explained by 
the balancing process of tensile forces acting on the 
primitive subchains /12/. 0n the other hand, the 
"slow" C2 relaxation may be expected to be deter- 
mined by a segment diffusion process (may be a par- 
tial reptation diffusion) which foEces the distri- 
bution of segment position around ~ after defor- 
mation to the new equilibrium distTibution. 

We mote finally that the characteristic swelling be- 
haviour of polymer networks (decreasing C2-value 
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with increasing degree of equilibrium swelling) may 
be explained in a natural manner. There are two ef- 
fects causing the swelling result. First, the in- 
crease in the @o-dimensions, and second, the loose- 
ning from the condition that crosslimks are embedded 
in the network structure (condition of fixed end- 
points) and hence a loosening from the assumption of 
affine displacement of junctions under strain /18,19, 
20/. Considerations under this viewpoint are in pro- 
gress. 
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